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A Relationship between Thermal Diffusivity and Finite
Deformation in Polymers1

Y. Wang2 and N. T. Wright2,3

The thermal diffusivity of elastomers (i.e., rubber-like materials) can change
substantially with elastic finite deformation. Initially isotropic elastomers may
be thermally anisotropic when deformed. Data from several experimental
studies demonstrate significant changes in the thermal conductivity or diffu-
sivity tensor with finite deformation. Formulating the thermal diffusivity ten-
sor and deformation in terms of the reference configuration may aid in the
development of constitutive relations by use of material symmetry. Illustrated
here is a relationship between the diffusivity and deformation of representa-
tive materials during uniaxial and equibiaxial deformation. Each component
of the diffusivity tensor appears to be related to the deformation in the direc-
tion of the component only.

KEY WORDS: biaxial tests; constitutive equations; elastomers; thermal diffu-
sivity; thermoelasticity; thermophysical properties.

1. INTRODUCTION

Elastomers are often subjected to substantial deformation and tempera-
ture gradients during use. The increased reliance on computer modeling
of material performance, in lieu of measurements, necessitates improved
constitutive relations of elastomers for a wide range of boundary condi-
tions. Specifically, thermomechanical modeling of the response of elastom-
ers requires constitutive models that account for both the mechanical and
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temperature dependence of the thermophysical properties of these mate-
rials. Although the effects of the temperature level on the value of the
thermal diffusivity have been relatively well studied [1, 2], the effect of
deformation on the value of the thermal diffusivity tensor has been less
explored. That is, few studies have examined the influence of deformation
on the thermal response of elastomers, and, there is no widely accepted
relation to describe the changes in thermophysical properties with respect
to finite deformation.

Measurements have demonstrated that there can be significant changes
in the thermal conductivity or diffusivity tensors of elastomers subject to
finite deformation. Venerus et al. [3] used forced Rayleigh scattering (FRS)
to measure the thermal diffusivity of silicone rubber subject to uniaxial
stretching. In FRS, a transient optical grating is formed in the material
by a diffraction pattern that results from absorption of intersecting laser
beams, which have been split from a single source [4]. The rate of decay of
the efficiency of diffraction is a function of one of the components of the
thermal diffusivity, depending on the relative orientation of the lasers to the
specimen. Multiple experiments are required in order to measure multiple
components of the diffusivity. Venerus et al. [3] report that for initially iso-
tropic silicone rubber, the component of the thermal diffusivity tensor in the
direction of a uniaxial stretching α11 increases by 10% for a stretch of ratio
of λ1 = 2, where λ1 equals the current length l divided by an undeformed
length L. The component of the diffusivity orthogonal to the stretching
α33 decreased by 5%. Figure 1 shows these variations in α11 and α33 for
stretching in the 1-direction. Motivated by the stress-optic rule, Venerus
et al. describe their results using a stress-thermal rule [5], that is,

(α11 −α33)/αeq = c(t11 − t33), (1)

where c is a material parameter, t11 and t33 are the components of the
Cauchy stress in the direction of stretch and orthogonal to it, respectively,
and the diffusivities are in the stretched state except αeq, which is the ther-
mal diffusivity of the unstretched elastomer. Equation (1) correlates the
difference between these orthogonal components of the diffusivity tensor
with the difference in the Cauchy stress components in the two directions
for this case of uniaxial stretching. The magnitude of each component
is not uniquely described, however. Because the change in each compo-
nent of the diffusivity appears linear with respect to stretch ratio, this sug-
gests that the stress is also linearly correlated with stretch, which typically
occurs over only limited ranges of stretches in most elastomers.

Measurements during homogeneous multiaxial deformations are
needed to formulate constitutive models for multiaxial behavior [6]. Thus,
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Fig. 1. Diffusivity of silicone rubber subject to uniaxial stretching
[3]. Triangles are α11, parallel to the stretch λ1 and the circles are α33,
orthogonal to λ1. The error bars represent ±7.5% uncertainty in the
stretch measurement.

LeGall and Wright [7] measured the three orthogonal components of the
diffusivity tensor during biaxial stretching of polyurethane, natural gum
rubber (NGR), and neoprene rubber. The deformation was homogeneous
in the central region of the specimen where the diffusivity was measured.
These results showed an increased diffusivity in the direction of stretch
and a decreased value in the orthogonal direction, similar to the uniaxial
results. LeGall and Wright did not provide a correlation of their data.

Here, an alternative correlation of diffusivity, based on methods
of finite elasticity, is presented. This relationship relies on transferring
the thermal diffusivities that are measured in the deformed state to the
undeformed reference configuration of the material. The results are then
correlated in terms of the deformation via the right Cauchy–Green defor-
mation tensor, instead of the extra stress, as done in Eq. (1). In this man-
ner, a simple relation between the components of the diffusivity tensor and
the deformation is observed for several elastomers.

2. BACKGROUND

Theory reveals that two constitutive functions are required to describe
the reversible finite strain thermomechanical response of elastomers [8].
These may be the Helmholtz free energy ψ and the spatial heat flux vector
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q. Theory further shows that ψ= ψ̂(F, T ) and q = q̂(F, T ,∇T ), where F =
∂x/∂X is the deformation gradient tensor, T is the temperature, ∇T (=
∂T /∂x) is the temperature gradient, X is the position vector of a mate-
rial particle in the reference configuration, and x is the position vector
of a material particle in the current configuration (see Fig. 2). Material
frame indifference allows ψ to be written as ψ=ψ(C, T ), where C=FT F
is the right Cauchy–Green deformation tensor. Stress–strain–temperature
relations result from derivatives of ψ with respect to C. For example, the
Cauchy (or true) stress tensor t may be calculated by

t = 2
J

F
∂ψ(C, T )
∂C

FT , (2)

where J =det F, which equals one for an incompressible material.
A number of models for ψ , such as the Mooney–Rivlin and Ogden

models, have been proposed and describe the mechanical response for var-
ious boundary conditions or levels of deformation [9]. Most studies of
elastomer mechanics have focused on isothermal deformations, with less
attention being devoted to the effects of temperature on ψ . Some excep-
tions include Ogden [10] proposing a method for finding ψ as a function
of biaxial stretches and temperature, and Humphrey and Rajagopal [11]
showing that in-plane biaxial tests allow measurement of thermoelastic
response functions (e.g., ∂ψ/∂IC , where IC= trC) similar to the isothermal
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Fig. 2. Illustration of the reference configuration �0, the current
configuration �, and the motion of a continuum body χ(X, t). Coor-
dinates are shown for the reference configuration X and current
configuration x.
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results of Rivlin and Saunders [12]. Wineman and Min [13] have demon-
strated the importance of temperature on the mechanical response of elas-
tomers in studies of the development of a secondary molecular network
resulting from microstructural changes due to elevated temperature and
deformation. This new network results in a changed mechanical response.

Alternatively, most conduction heat transfer analyses neglect the influ-
ence of finite strain on the heat flux vector. Rather, most reports assume
Fourier conduction q(x, T )= −k(T )∇T , where q(x, T ) is the spatial heat
flux, ∇T (= ∂T /∂x) is the spatial gradient of temperature, and k(T ) is the
scalar (i.e., isotropic) spatial thermal conductivity [1]. If anisotropy is con-
sidered, then the heat flux may be written in the current configuration as
Duhamel conduction [9] with q(x, T )= −k(F, T )∇T , where k(F, T ) is the
spatial thermal conductivity tensor. For materials subject to small deforma-
tion, models of thermal response that are formulated in either the current
or reference configuration will yield similar results. Elastomers, however,
are often subject to large multiaxial deformation, and models of the ther-
mal response of materials subject to large deformation must include changes
to both the geometry and the material properties, such as the thermal con-
ductivity. Moreover, the thermal conductivity of polymers, and specifically
elastomers, can change isotropy as a result of large strain [3, 14].

Finite strain constitutive relations are often formulated in terms of
the referential thermal conductivity K(C, T ), to take advantage of mate-
rial symmetry. Using Nanson’s formula [9], the heat flux in the reference
and current configurations is related by q= (1/J )Fq0, where q0 is the heat
flux vector in the reference configuration. Conduction in the reference con-
figuration may be written as q0(x, T )= −K(C, T )∇0T (X, T ), where ∇0T

(= ∂T /∂X) is the referential temperature gradient. One can thus deter-
mine K(C, T ) from the measurable k(F, T ) via k(F, T )= (1/J )FK(C, T )FT .
Substituting Duhamel’s equation into the referential conservation of energy
equation yields, neglecting the stress power and heat sources,

∂T (X, t)/∂t=∇0 · (α0(C, T ) ·∇0T (X, t)) , (3)

where α0(C, T ) (=K(C, T )/ρ0cF (C, T )) is the referential thermal diffusivity
tensor, in which ρ0 is the referential mass density and cF is the referential
constant deformation specific heat. Because elastomers are here assumed to
be incompressible and cF is insensitive to deformation [3], either the ther-
mal diffusivity tensor or the thermal conductivity tensor may be used to
characterize changes in thermophysical response due to deformation. The
thermal diffusivity is more easily measured by noncontact methods, which
is beneficial for measurement of α in materials subject to finite deformation.
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3. RESULTS

Consider the relationship of α11 with respect to λ1 and α33 with
respect to λ3. Assuming material incompressibility (J = λ1λ2λ3 = 1), the
deformation gradient tensor for uniaxial stretching is

F =
⎡
⎣
λ 0 0
0 λ−1/2 0
0 0 λ−1/2

⎤
⎦ (4)

and, thus, λ3 = 1/
√
λ1. Figure 3 shows that the data from Fig. 1 can be

correlated with a single power law correlation in terms of αii and λi , or
with separate linear correlations, that is, a single trend for α11 in terms of
λ1, and another for α33 in terms of λ3. Estimating the parameters using
a least-squares method, each of these correlations has approximately the
same quality of fit.

To take advantage of possible symmetry conditions for initially isotro-
pic materials, the values of α should be transformed to α0, i.e., the ther-
mal diffusivity in the reference configuration, and the deformation should
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Fig. 3. Silicone rubber uniaxial loading data of Fig. 1 replotted as
α11 vs. λ11 (circles) and α33 vs. λ33 (triangles). The orthogonal stretch
λ33 was calculated assuming incompressibility.
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be described using C. Figure 4 shows the relationship between α0 and C
for the silicone rubber data from Fig. 1. The only nonzero components
of α0 are α0,11 = α11λ

−2, α0,22 = α22λ, and α0,33 = α33λ. Here, the mate-
rial is assumed to be transversely isotropic, with α33 =α22, consistent with
Venerus et al. reporting only a single component of α in the orthogonal
direction. A least-squares fit of these data shows that both the stretched
and orthogonal directions apparently follow the same trend. This trend is
described well by

αii

αeq
=aCbii i=1,2,3 (not summed), (5)

where a and b are dimensionless material parameters. Values of a and b

are listed in Table I.
LeGall and Wright [7] used a variation of the flash method [15] to

measure simultaneously the three principal components of α of room-
temperature vulcanizing (RTV) polyurethane that was subject to homo-
geneous equibiaxial deformation, that is, both in-plane directions are
stretched equally. This pulse system involves a minimum of contact with
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Fig. 4. Silicone rubber uniaxial loading data from Fig. 1 plotted in
the reference configuration as α0,11 vs. C11 (circles) and α33 vs. C33

(triangles).
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Fig. 5. Diffusivity of biaxially stretched polyurethane RTV rubber,
in terms of the reference configuration. In-plane components are
α0,11/αeq vs. C11 (circles), α0,22/αeq vs. C22 (squares), and α0,33/αeq

vs. C33 (triangles).

Table I. Coefficients for Eq. (5); Fit of α/αeq for Initially Isotropic Elastomers Subject to
Uniaxial or Biaxial Stretching

Material Loading a b r2 T Ref

Silicone rubber Uniaxial 0.998 −0.945 0.990 25◦C [3]
PU RTV (preconditioning 1) Biaxial 0.929 −0.926 0.998 20◦C [7]
PU RTV (preconditioning 2) Biaxial 0.931 −0.946 0.998
PU RTV (preconditioning 3) Biaxial 0.897 −0.929 0.998

the specimen, which is required for measuring the thermal diffusivity of
materials undergoing finite stretching. For in-plane stretch ratios of λ1 and
λ2, the out-of-plane stretch ratio will be λ3 =1/(λ1λ2), for an incompress-
ible material. The deformation gradient tensor for equibiaxial stretch is

F =
⎡
⎣
λ1 0 0
0 λ2 0
0 0 λ−1

1 λ−1
2

⎤
⎦ . (6)
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By again transferring α to the reference configuration, and plotting the
components of α0 against the corresponding components of C, there
appears to be a single relationship for the polyurethane RTV (Fig. 5). A
least-squares fit of these data suggests a similar trend as in the uniaxial
data. The coefficients for the three specimens are listed in Table I; LeGall
and Wright [7] cite the three specimens separately because each had under-
gone a different mechanical preconditioning protocol. Preconditioning of
elastomeric specimens is required to obtain repeatable thermoelastic results
due to the Mullins effect [16].

4. DISCUSSION

The isotropic thermal diffusivity of undeformed silicone and polyurethane
rubbers becomes anisotropic when these elastomers undergo reversible
finite strain. The results for uniaxial stretching [3] and biaxial stretching
[7] imply that α is transversely isotropic after homogeneous deformation.
Figure 3 suggests that a single correlation, nearly linear in stretch, may
describe the change in diffusivity during uniaxial deformation, both in the
stretching direction and orthogonal to it.

While constitutive relations for thermal diffusivity that include the
influence of finite deformation could be developed using a number of
coordinate frames, relating α to α0 and comparing it with C, i.e., in the
reference configuration, can aid in the development of the constitutive
relations because of the material symmetry. The ability of Eq. (5) to corre-
late the diffusivity data is expected, given the relationship between α0 and
C. That is, if α were constant with stretch, then in the reference config-
uration, α0 ∝ C−1. This is revealed in Table I, where b is almost −1, the
deviation being the result of the actual change in diffusivity. The scatter in
the measurements is revealed by the value of a, which is essentially 1 for
the uniaxial data, but deviates from 1 by as much as 10% for the biaxial
data. Thus, while care must be exercised to avoid obscuring the small vari-
ations in α with deformation, both components of α may be correlated in
the reference configuration.

Figure 3 and Eq. (5) further suggest that components of diffusivity
are described by the deformation in the direction corresponding to that
component. Deformation orthogonal to the uniaxial stretch or in the out-
of-plane direction for the biaxial stretch case was computed assuming that
rubber-like materials are volume preserving on deformation. This assump-
tion has been well-justified based on measurements that have shown that
volume changes are of the order of 10−4 or less [16]. Based on the
assumption of incompressibility, the components of F are related by J =1
and only one component of F is needed to characterize the deformation
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Table II. Coefficients for Eq. (5) for α0/αeq of Initially Anisotropic Elas-
tomers Subject to Equibiaxial Loading

Material Loading a b r2 T Ref.

NGR Biaxial 0.9273 −0.9783 0.9943 20◦C [7]
Neoprene Biaxial 0.9378 −0.9331 0.9948 20◦C [7]

for the uniaxial and equibiaxial cases. This suggests that the off-axis terms
are unlikely to contribute to changes in α0 for initially isotropic materials.

LeGall and Wright [7] also measured the principal components of α

of NGR and neoprene that were anisotropic in the undeformed state due
to manufacturing. The in-plane components of α0 were 5 and 6% higher
than the out-of-plane coefficient for the NGR and neoprene, respectively.
Materials with initial anisotropy violate the assumptions leading to Eq.
(5). Nevertheless, the response of these materials, shown by the values of
a and b for the NGR and neoprene listed in Table II, is similar to those
listed in Table I.

A simple relation between finite deformation and the change in diffu-
sivity of elastomers has been presented. Clearly, further study is required
to clarify the relationship between α and deformation for elastomers and
other polymers. Both molecular weight [17] and cross-linking [13] have
influence on the thermomechanical response of elastomers. Their role in
the thermophysical constitutive behavior needs to be examined.
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